
Mauricio Alferez, Angelo Rizzi and Alvaro Veizaga
SnT, University of Luxembourg
mauricio.alferez@uni.lu / angelo.rizzi@uni.lu / alvaro.veizaga@uni.lu

Qualisist Tool Training

mailto:mauricio.alferez@uni.lu
mailto:angelo.rizzi@uni.lu
mailto:alvaro.veizaga@uni.lu

Qualisist
A joint project of SnT, escent and Clearstream

Automated generation of acceptance criteria

Challenges Addressed by Qualisist

Generation of a full deliverable in a single tool

Production of high-quality requirements and models

The Qualisist Solution

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

1. Modeling
support

4. Full deliverable
generation

5. Gherkin test
scenarios generation

3. Requirements-to-model reconciliation
support

Project Name - Phase #
Subtitle

Author: Mauricio ALFEREZ
Date: 18/09/2020
Document Id: xxxxx

Internal use only

SRA - System Requirements

+ | Company logo

2. Requirements
authoring support

0. Installation and configuration
1. Modelling Support
2. Requirements authoring support
3. Requirements-to-Model reconciliation support
4. Full deliverable generation
5. Gherkin test Scenarios generation

Agenda

Installation and Configuration

• Download the latest installers available at
https://dropit.uni.lu/invitations?share=ce52a5e
d37e4c39b90a0

• Extract the installers to your machine

https://dropit.uni.lu/invitations?share=ce52a5ed37e4c39b90a0

Installation of Java

• Check if Java 8 is installed on
your computer.
Start→Control Panel→Programs
and Features.

• If Java is not listed in
Programs and Features, install
Java SE 8 using the file jre-
8u171-windows-i586.exe (See
the next slide)

Installation of Java

3
1

2

Tomcat Installation and Configuration

Tomcat Installation and Configuration

Mandatory
values

Tomcat Installation and Configuration

Qualisist Add-Ins Installation

1. Qualisist Requirement
Editing Tools

2. Qualisist Acceptance Criteria
Generator

3. Qualisist Validation Rules

4. Qualisist Report Generator

Qualisist Add-Ins Configuration

Open Enterprise Architect and go to Specialize → Add-Ins
You will see the icons shown below

Qualisist Add-Ins Configuration

Go to: Specialize → Add-Ins → Manage Add-Ins
Make sure all the Qualisist Add-Ins will load on startup

Qualisist Add-Ins Configuration

• Go to: Specialize →
Technologies → Manage

• Make sure that at least the
following MDG (Model-Driven
Generation) are selected:
– (1) Basic UML2 Technology
– (2) Core Extensions, and
– (3) Qualisist modelling

2.5

Agenda

0. Installation and Configuration
1. Modelling Support
2. Requirements authoring

support
3. Requirements-to-Model

reconciliation support
4. Full deliverable generation
5. Gherkin test Scenarios

generation

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

1. Modeling
support

4. Full deliverable
generation

5. Gherkin test
scenarios generation

3. Requirements-to-model reconciliation
support

Project Name - Phase #
Subtitle

Author: Mauricio ALFEREZ
Date: 18/09/2020
Document Id: xxxxx

Internal use only

SRA - System Requirements

+ | Company logo

2. Requirements
authoring support

The Qualisist Solution

Qualisist Modeling Tool Support

• Full integration into the Enterprise

Architect modelling platform

• Extension and customization of the

modeling functionality of Enterprise

Architect
Integrated modeling platform

based on open standards

ENTERPRISE
ARCHITECT

Qualisist Modeling
Support Add-In

Customized toolboxes, model patterns,
diagrams and model templates

• UML [1] is a standard modelling language intended to be used for
– modelling business and similar processes,
– analysis, design, and implementation of software-based systems

• Qualisist proposes a UML-based methodology and tool-support
• In Qualisist, the software requirements are documented using

– A subset of the UML, and
– a controlled natural language for requirements

The Unified Modelling Language (UML)

[1] https://www.omg.org/spec/UML/2.5/

https://www.omg.org/spec/UML/2.5/
https://www.omg.org/spec/UML/2.5/

Use Case Diagrams (UCD)
• Use case diagrams express the expectations of the

customers/stakeholders
Class diagram (CD)
• In Qualisist, we use CDs to represents Domain

Models
• A Domain Model includes concepts of a domain, their

attributes, and the relations between them
Activity Diagram (AD)
• Workflows of stepwise actions
• Support for choice, iteration and concurrency

Types of UML Diagrams used in Qualisist

WĂƌƟĐŝƉĂŶƚ�EŽƟĮĐĂƟŽŶ

ZĞĂƐŽŶ͗�� ůƉŚĂŶƵŵĞƌŝĐ�Ϭ͘͘ϭ
DĞƐƐĂŐĞ͗�� ůƉŚĂŶƵŵĞƌŝĐ

WĂƌƟĐŝƉĂŶƚ�EŽƟĮĐĂƟŽŶ

ZĞĂƐŽŶ͗�� ůƉŚĂŶƵŵĞƌŝĐ�Ϭ͘͘ϭ
DĞƐƐĂŐĞ͗�� ůƉŚĂŶƵŵĞƌŝĐ

WĂƌƟĐŝƉĂŶƚ�
^ĞƩůĞŵĞŶƚ�/ŶƐ
WĂƌƟĐŝƉĂŶƚ�

^ĞƩůĞŵĞŶƚ�/ŶƐ

^ĞƩůĞŵĞŶƚ�/ŶƐƚƌƵĐƟŽŶ

^ĞƩůĞŵĞŶƚ�ĂƚĞ͗��ĂƚĞ

^ĞƩůĞŵĞŶƚ�/ŶƐƚƌƵĐƟŽŶ

^ĞƩůĞŵĞŶƚ�ĂƚĞ͗��ĂƚĞ

dϮ^�^ĞƩůĞŵĞŶƚ�/ŶƐ

^ƚĂƚĞ͗�dϮ^ �/ŶƐƚƌƵĐƟŽŶ�^ƚĂƚĞ

dϮ^�^ĞƩůĞŵĞŶƚ�/ŶƐ

^ƚĂƚĞ͗�dϮ^ �/ŶƐƚƌƵĐƟŽŶ�^ƚĂƚĞ

ͨĞŶƵŵĞƌĂƟŽŶͩ
dϮ^�/ŶƐƚƌƵĐƟŽŶ�^ƚĂƚĞ

dŽsĂůŝĚĂƚĞ
sĂůŝĚ
^ĞƩůĞĚ
ZĞũĞĐƚĞĚ
DĂƚĐŚĞĚ

EŽƟĮ ĐĂƟŽŶƐ Ϭ͘͘Ύ

WĂƌƟĐŝƉĂŶƚ�/ŶƐƚƌƵĐƟŽŶ

Existing

New - outside SRA

New - IT impacts

New - no IT impacts

Legend

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate
Receive and

Generate Instruction
Receive and

Generate Instruction
pInx: Participant
Settlement Ins

Validate InstructionValidate Instruction

Inx: T2S
Settlement Ins

Settle InstructionSettle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send NotificationSend Notification

Inx: T2S
Settlement Ins

Run Matching
Process

Run Matching
ProcessX

days
passed

X
days

passed

Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid
Inx: T2S Settlement Ins

State = RejectedFlowFinal

Receive
notification

Receive
notification

notif: Participant
Notification

[Yes]

[No]

[Inx.State ==
Valid]

1

Qualisist Modeling Methodology

UML
ADs

Specify Activity
Diagrams (ADs)

Create
Domain ModelElicit Use Cases Domain

Model

Documents and
interviews

UML Use Case
Diagrams

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

1. Modeling
support

4. Full deliverable
generation

5. Gherkin test
scenarios generation

3. Requirements-to-model reconciliation
support

Project Name - Phase #
Subtitle

Author: Mauricio ALFEREZ
Date: 18/09/2020
Document Id: xxxxx

Internal use only

SRA - System Requirements

+ | Company logo

2. Requirements
authoring support

The Qualisist Solution

Change Impact Classifications for All UML Elements

• Proposed by Clearstream
• Applied to any element in UML

diagrams
• Existing: Qualisist applies it to

new elements
• New – IT impacts. Qualisist

applies it to an element E when
there is at least one requirement
traced to E

• New – outside SRA and New –
no IT impact. Applied by
business analysts.

Main User Interface

Diagram View

Package

Diagram

Project Browser Change Impact
Legend

Open/Close
Toolbox

Ribbons
(or Top Bar Menus)

(Customized)
toolbox

Search

Help

Qualisist SRA Model Pattern

• Qualisist provides a custom
model pattern named
“Qualisist SRA Model”.

• A Qualisist SRA model is
organized in packages that
represents the sections of a
Software Requirements
Analysis (SRA) documents
according to Clearstream IFS.

Qualisist Modelling Toolboxes

• Each type of diagram has a
different toolbox that defines
the available elements
according to Qualisist.

• Toolboxes provide quick
access to:
– The most recurring elements in

the Qualisist methodology
– Modeling patterns

Example: Toolbox for Qualisist Activity
Diagrams

• Modelling from Sparx Systems
– https://sparxsystems.com/resources/user-

guides/15.2/index.html#modeling
• Official UML specification (for advanced users)

– https://www.omg.org/spec/UML/2.5/

Modeling Support Resources

https://sparxsystems.com/resources/user-guides/15.2/index.html
https://www.omg.org/spec/UML/2.5/

https://orbilu.uni.lu/handle/10993/39710 (Chapter III)

More Information about Qualisist Modeling Approach

https://orbilu.uni.lu/handle/10993/39710

Practice 1: Create a Qualisist SRA Model Using the Wizard

• Goal: Learn to create and
edit an SRA model fast

• Tasks:
1. Create a “Qualisist SRA Model”

using the model wizard
2. Open each package and

compare with the SRA sections

Expected Result:

Steps to Create a Qualisist SRA Model Using the Wizard

1
3

2

4

• We can use a Use Case diagram to answer the following
questions:
– What is being described? (The system)
– Who interacts with the system? (The actors)
– What can the actors do? (The use cases)

UML Use Case Diagrams

Example UML Use Case Diagram

Actor

Use CaseSystem
(Subject)

Actor

Example UML Use Case Diagram (Relationships)

Include

Extend

Association

Use Case Diagrams Notation used in Qualisist (1/2)
Name Notation Description

System
Called “Subject” in UML
(Boundary box notation)

Boundaries between the system and
the users of the system

Use case Unit of functionality of the system

Actor
(Stickman notation and
Class notation)

Role of the users of the system

^ǇƐƚĞŵ

�ϭ�ϭ

ͨĂĐƚŽƌͩ
�Ϯ

ͨĂĐƚŽƌͩ
�Ϯ

h�h�^ǇƐƚĞŵ

�ϭ�ϭ

ͨĂĐƚŽƌͩ
�Ϯ

ͨĂĐƚŽƌͩ
�Ϯ

h�h�

^ǇƐƚĞŵ

�ϭ�ϭ

ͨĂĐƚŽƌͩ
�Ϯ

ͨĂĐƚŽƌͩ
�Ϯ

h�h�

^ǇƐƚĞŵ

�ϭ�ϭ

ͨĂĐƚŽƌͩ
�Ϯ

ͨĂĐƚŽƌͩ
�Ϯ

h�h�

Use Case Diagrams Notation used in Qualisist (2/2)

Name Notation Description

Association
(In Use Case Diagrams)

Relationship between use cases
and actors

Extend relationship B extends A: optional use of use
case B by use case A

Include relationship A includes B: required use of use
case B by use case A

�� ��

��

h�h�

�� ��
ͨĞǆƚĞŶĚͩ

�ǆŝƐƟŶŐ

EĞǁ�Ͳ�ŽƵƚƐŝĚĞ�^Z�

EĞǁ�Ͳ�/d�ŝŵƉĂĐƚƐ

EĞǁ�Ͳ�ŶŽ�/d�ŝŵƉĂĐƚƐ

>ĞŐĞŶĚ

�� ��
ͨŝŶĐůƵĚĞͩ

• A domain model is a visual representation of:
– Conceptual classes (meaningful real-world concepts or

entities pertinent to the domain)
– Associations between conceptual classes
– Attributes of conceptual classes

• In Qualisist, domain models are expressed as UML class
diagrams (CDs)

Domain Models in Qualisist

Conceptual Class and Objects

• A Class is a pattern or
template which defines the
common features (e.g.,
attributes) of many objects.
The objects are then referred
to as instances of these
classes.

class Generic Examples

Person

firstname: Alphanumeric
lastname: Alphanumeric
dob: Date

Person

firstname: Alphanumeric
lastname: Alphanumeric
dob: Date

newPerson:
Person

:Person

newPerson:
Person

lastname = Smith
firstname = Jhon
dob = 12-03-1950

:Person

lastname = Smith
firstname = John
dob = 12-03-1950

Attributes

Name

(Conceptual) Class

<<Instance of>> <<Instance of>> <<Instance of>>

Objects

that describes

Basic Syntax for Attributes in a Class

class Class Syntax

Person

firstname: Alphanumeric
lastname: Alphanumeric
dob: Date
main address: Alphanumeric
languages: Language [1..*] = English
/age: Number

Person

firstname: Alphanumeric
lastname: Alphanumeric
dob: Date
main address: Alphanumeric
languages: Language [1..*] = English
/age: Number

«enumerati...
Language

English
French
Spanish

Derived attribute

Default Value

Multiplicity

Name

Type

[/]	Name	[:	Type]	[Multiplicity]	[=	Default	Value]	

WĂƌƟĐŝƉĂŶƚ�EŽƟĮĐĂƟŽŶ

ZĞĂƐŽŶ͗�� ůƉŚĂŶƵŵĞƌŝĐ�Ϭ͘͘ϭ
DĞƐƐĂŐĞ͗�� ůƉŚĂŶƵŵĞƌŝĐ

WĂƌƟĐŝƉĂŶƚ�EŽƟĮĐĂƟŽŶ

ZĞĂƐŽŶ͗�� ůƉŚĂŶƵŵĞƌŝĐ�Ϭ͘͘ϭ
DĞƐƐĂŐĞ͗�� ůƉŚĂŶƵŵĞƌŝĐ

WĂƌƟĐŝƉĂŶƚ�
^ĞƩůĞŵĞŶƚ�/ŶƐ
WĂƌƟĐŝƉĂŶƚ�

^ĞƩůĞŵĞŶƚ�/ŶƐ

^ĞƩůĞŵĞŶƚ�/ŶƐƚƌƵĐƟŽŶ

^ĞƩůĞŵĞŶƚ�ĂƚĞ͗��ĂƚĞ

^ĞƩůĞŵĞŶƚ�/ŶƐƚƌƵĐƟŽŶ

^ĞƩůĞŵĞŶƚ�ĂƚĞ͗��ĂƚĞ

dϮ^�^ĞƩůĞŵĞŶƚ�/ŶƐ

^ƚĂƚĞ͗�dϮ^ �/ŶƐƚƌƵĐƟŽŶ�^ƚĂƚĞ

dϮ^�^ĞƩůĞŵĞŶƚ�/ŶƐ

^ƚĂƚĞ͗�dϮ^ �/ŶƐƚƌƵĐƟŽŶ�^ƚĂƚĞ

ͨĞŶƵŵĞƌĂƟŽŶͩ
dϮ^�/ŶƐƚƌƵĐƟŽŶ�^ƚĂƚĞ

dŽsĂůŝĚĂƚĞ
sĂůŝĚ
^ĞƩůĞĚ
ZĞũĞĐƚĞĚ
DĂƚĐŚĞĚ

EŽƟĮ ĐĂƟŽŶƐ Ϭ͘͘Ύ

WĂƌƟĐŝƉĂŶƚ�/ŶƐƚƌƵĐƟŽŶ

Example Domain Model

Class
Attribute

Name

Attribute
Name

EnumerationAttribute
type

Attribute
multiplicity

Attribute multiplicity

Literal
Value

WĂƌƟĐŝƉĂŶƚ�EŽƟĮĐĂƟŽŶ

ZĞĂƐŽŶ͗�� ůƉŚĂŶƵŵĞƌŝĐ�Ϭ͘͘ϭ
DĞƐƐĂŐĞ͗�� ůƉŚĂŶƵŵĞƌŝĐ

WĂƌƟĐŝƉĂŶƚ�EŽƟĮĐĂƟŽŶ

ZĞĂƐŽŶ͗�� ůƉŚĂŶƵŵĞƌŝĐ�Ϭ͘͘ϭ
DĞƐƐĂŐĞ͗�� ůƉŚĂŶƵŵĞƌŝĐ

WĂƌƟĐŝƉĂŶƚ�
^ĞƩůĞŵĞŶƚ�/ŶƐ
WĂƌƟĐŝƉĂŶƚ�

^ĞƩůĞŵĞŶƚ�/ŶƐ

^ĞƩůĞŵĞŶƚ�/ŶƐƚƌƵĐƟŽŶ

^ĞƩůĞŵĞŶƚ�ĂƚĞ͗��ĂƚĞ

^ĞƩůĞŵĞŶƚ�/ŶƐƚƌƵĐƟŽŶ

^ĞƩůĞŵĞŶƚ�ĂƚĞ͗��ĂƚĞ

dϮ^�^ĞƩůĞŵĞŶƚ�/ŶƐ

^ƚĂƚĞ͗�dϮ^ �/ŶƐƚƌƵĐƟŽŶ�^ƚĂƚĞ

dϮ^�^ĞƩůĞŵĞŶƚ�/ŶƐ

^ƚĂƚĞ͗�dϮ^ �/ŶƐƚƌƵĐƟŽŶ�^ƚĂƚĞ

ͨĞŶƵŵĞƌĂƟŽŶͩ
dϮ^�/ŶƐƚƌƵĐƟŽŶ�^ƚĂƚĞ

dŽsĂůŝĚĂƚĞ
sĂůŝĚ
^ĞƩůĞĚ
ZĞũĞĐƚĞĚ
DĂƚĐŚĞĚ

EŽƟĮ ĐĂƟŽŶƐ Ϭ͘͘Ύ

WĂƌƟĐŝƉĂŶƚ�/ŶƐƚƌƵĐƟŽŶ

Example Domain Model (Relationships)

Association
relationship

Generalization
Relationship

WĂƌƟĐŝƉĂŶƚ�EŽƟĮĐĂƟŽŶ

ZĞĂƐŽŶ͗�� ůƉŚĂŶƵŵĞƌŝĐ�Ϭ͘͘ϭ
DĞƐƐĂŐĞ͗�� ůƉŚĂŶƵŵĞƌŝĐ

WĂƌƟĐŝƉĂŶƚ�EŽƟĮĐĂƟŽŶ

ZĞĂƐŽŶ͗�� ůƉŚĂŶƵŵĞƌŝĐ�Ϭ͘͘ϭ
DĞƐƐĂŐĞ͗�� ůƉŚĂŶƵŵĞƌŝĐ

WĂƌƟĐŝƉĂŶƚ�
^ĞƩůĞŵĞŶƚ�/ŶƐ
WĂƌƟĐŝƉĂŶƚ�

^ĞƩůĞŵĞŶƚ�/ŶƐ

^ĞƩůĞŵĞŶƚ�/ŶƐƚƌƵĐƟŽŶ

^ĞƩůĞŵĞŶƚ�ĂƚĞ͗��ĂƚĞ

^ĞƩůĞŵĞŶƚ�/ŶƐƚƌƵĐƟŽŶ

^ĞƩůĞŵĞŶƚ�ĂƚĞ͗��ĂƚĞ

dϮ^�^ĞƩůĞŵĞŶƚ�/ŶƐ

^ƚĂƚĞ͗�dϮ^ �/ŶƐƚƌƵĐƟŽŶ�^ƚĂƚĞ

dϮ^�^ĞƩůĞŵĞŶƚ�/ŶƐ

^ƚĂƚĞ͗�dϮ^ �/ŶƐƚƌƵĐƟŽŶ�^ƚĂƚĞ

ͨĞŶƵŵĞƌĂƟŽŶͩ
dϮ^�/ŶƐƚƌƵĐƟŽŶ�^ƚĂƚĞ

dŽsĂůŝĚĂƚĞ
sĂůŝĚ
^ĞƩůĞĚ
ZĞũĞĐƚĞĚ
DĂƚĐŚĞĚ

EŽƟĮ ĐĂƟŽŶƐ Ϭ͘͘Ύ

WĂƌƟĐŝƉĂŶƚ�/ŶƐƚƌƵĐƟŽŶ

How Many Attributes does Participant Settlement Ins have?

• According to Clearstream, Qualisist should support four
types of data attributes:
– Boolean: Contain the value either true or false
– Date: Contain a timestamp
– Alphanumeric: Contain either numbers and/or alphabetical

characters
– Numeric: Contain only numbers (either integers or decimals)

Predefined Attribute Types

• Use common terminology from your business domain
• Domain Models are built together with other diagrams to

provide descriptions of the types that they use
• Use singular nouns for the names of classes, e.g., use

Instruction/Account instead of Instructions/Accounts
• Use the attribute types predefined by Clearstream in

Qualisist (i.e., Boolean, Date, Alphanumeric, Numeric)

Points of Attention in Domain Modeling

Domain Models Notation used in Qualisist
Name Notation Description
Class

Description of the structure and
behavior of a set of objects

Enumeration
A type that has a limited number of
values.

Generalization The specialising or sub-type (A)
inherits attributes and associations
of the general or base type (B)

Association

Relationship between classes

class Generalization

AA BB

class Enum

«enumeration»
Enumeration1

 LiteralValue1
 LiteralValue2
 LiteralValue3
 ...

class Class

Class1

attribute 1: Boolean = False
attribute 2: Date
attribute 3: Number
attribute 4: Enumeration1
attribute 5: Alphanumeric
attribute 6: int = 5
attribute 7: Class2

Class1

attribute 1: Boolean = False
attribute 2: Date
attribute 3: Number
attribute 4: Enumeration1
attribute 5: Alphanumeric
attribute 6: int = 5
attribute 7: Class2

Class2Class2

class Association

Class4Class4 Class5Class5Role for Class4

min...max # of
instances of

Class4

Role for Class5

min...max #
of instances

of Class5

Numeric

Numeric = 2

Steps to Create Attributes Using Predefined Types

1

2

Select one
predefined type
among
Alphanumeric,
Boolean, Date,
and Number

4

Write a new
attribute name

Select an existing
Enumeration or
Class from the
diagram

Or
Select an Element

Make sure that the
language is

Qualisist 3

• Follow the news steps if Qualisist does not appear as the
default language

Steps to Define a Default Language for New Classes

Make sure that the
language is

Qualisist

Go to Configure → Options → Source Code Engineering → Code
Generation section → Default Language for Code Generation

2

1

• An activity diagram is a directed graph composed of
Nodes and Edges

• Control flow and object flow define the execution order
• In Qualisist, Activity diagrams should

– Be created along with the domain model
– Include control flow and object flow
– Be annotated with Pre- and Post-conditions
– Include Activity Partitions

Activity Diagrams

Example Activity Diagram (Nodes)
Call Behavior Action

Action

Time Event Action

Interruptible
Activity Region

Activity Partition

Object

Fork

Merge

Decision

Example Activity Diagram (Edges)

Object
flow

Control
flow

Interrupt
Flow

• Allows the grouping of nodes and edges of an Activity
due to responsibilities

• Makes the activity diagram more structured
• In Qualisist, each Activity Partition must correspond to an

Actor from the Use Case diagram

Activity Partition

act Partitions

Secondary ActorSystem Under Discussion

SubSystem2SubSystem1

Primary ActorPrimary Actor System Under Discussion Secondary Actor

SubSystem A SubSystem B

Example Activity Partitions Related to Actors

Activity Partition Activity Partition

Reference to an Actor
(See Use Case Diagram)

Actor Instance

Question: Which Actors are Referenced in the Example?

: Participant : Settlement Platform

Action

• Basic element to specify user-
defined behavior

• Process input values to produce
output values

• Special notation for predefined
types of actions, for example:
– Opaque Actions

• Atomic behavior
– Call behavior action

• Behavior is described in another AD
– Event-based actions

Call behavior

Accept time event Accept event

Opaque

act Types of Actions

Settlement
Data

Passed

Validate Instruction

Send
Notification

Send
Notification

Run Matching
Process

Run Matching
Process

Request
Cancelation

act Types of Actions

Existing

New - outside SRA

New - IT impacts

New - no IT impacts

Legend

Settlement
Data

Passed

Validate Instruction

Send
Notification

Send
Notification

Run Matching
Process

Run Matching
Process

Request
Cancelation

act Types of Actions

Existing

New - outside SRA

New - IT impacts

New - no IT impacts

Legend

Settlement
Data

Passed

Validate Instruction

Send
Notification

Send
Notification

Run Matching
Process

Run Matching
Process

Request
Cancelation

act Types of Actions

Existing

New - outside SRA

New - IT impacts

New - no IT impacts

Legend

Settlement
Data

Passed

Validate Instruction

Send
Notification

Send
Notification

Run Matching
Process

Run Matching
Process

Request
Cancelation

Example of Actions in Activity Partitions
Call Behavior Action

Action

Time Event ActionAction Pin

Call Behavior Action

• The execution of an Action
calls an Activity

• In Qualisist, an Activity
Diagram specifies the
behavior of the called Activity

• Advantages:
– Model becomes clearer
– Reusability

act Types of Actions

Existing

New - outside SRA

New - IT impacts

New - no IT impacts

Legend

Settlement
Data

Passed

Validate Instruction

Send
Notification

Send
Notification

Run Matching
Process

Run Matching
Process

Request
Cancelation

: Name of the
Called Activity

Anonymous Call Behavior Action

Called Activity

Object (1/3)

• Object is an instance of
a class

• Not all the properties of the
Class have to be represented
in the Object
– Example: The T2S Settlement

Ins Class in the CD has two
properties (State and Settlement
date).

act difference between object and class

ActivityInitial ActivityFinal

Settle
Instruction

Settle
Instruction

:Settlement
Instruction

State = Settled

Send
Notification

Send
Notification

Settlement Instruction

Current State: Instruction State
Settlement Date: Date

Settlement Instruction

Current State: Instruction State
Settlement Date: Date

«enumeration»
Instruction State

Valid
Rejected
Matched
ToValidate
Settled

Object

Instance of

Class Diagram (CD)

Activity Diagram (AD)

Class

AttributesState: T2S Instruction State
Settlement date : Date

Object (2/3)

• Objects could have a name or
be anonymous

• Object name allows to
distinguish the instance from
other instances

• Example: Notation for an Object of the
Person class

class Generic Examples

Person

firstname: Alphanumeric
lastname: Alphanumeric
dob: Date

Person

firstname: Alphanumeric
lastname: Alphanumeric
dob: Date

newPerson:
Person

:Person

newPerson:
Person

lastname = Smith
firstname = Jhon
dob = 12-03-1950

:Person

lastname = Smith
firstname = John
dob = 12-03-1950

Object Name Class Name

Anonymous
Objects

Object (3/3)

• Is the source and target of an
object flow edge

• At run-time, an Object can
have specific values for its
attributes or exist in a
particular state.

• Example: The value of the
attribute status of an Order
must have the value Filled
after the execution of the
action Fill Order

act Action-Object-Action type 2

Existing

New - outside SRA

New - IT impacts

New - no IT impacts

Legend

:Order

status = Filled
Fill Order Review

Order

Order

- status: OrderStatus
- creation date: Date

Attribute Name Expected Value

Representations of an Object (1/4)

• For Activities
– Activity Parameter Node

Name

Type

act Password

Login: Alphanumeric

Password:
Alphanumeric

result: Boolean

Authenticate User

Login: Alphanumeric

Password:
Alphanumeric

result: Boolean
Action1Action1 Action2Action2

Name

Type

Representations of an Object (2/4)

• For actions
– Action Pin

– Object Node (Rectangle Notation)

Name

Name Type

Type

Representations of an Object (3/4)

• Action Pin
– Input Pin provides values to the

Action, whereas an Output Pin
contains the results from that
Action

– Useful to Save space in the
diagram

– In Qualisist, use action pins
when there are no object state
changes

• Example: We omitted the
output pin of Send Instruction
because it is the same object
received by Received
Instruction

Representations of an Object (4/4)

• Object Node (Rectangle
notation)
– Useful to model the varying

behavior of objects at run-time
– Run state is defined in three

parts
1. Attribute name,
2. Operator, e.g., =, <, !=, or any other
user-defined operator, and
3. Value, e.g., a number, a literal
value

Attr1 <12

act Action-Object-Action type 2

Existing

New - outside SRA

New - IT impacts

New - no IT impacts

Legend

:Order

status = Filled
Fill Order Review

Order

Order

- status: OrderStatus
- creation date: Date

attr1 must not be greater than 12 after
executing Send Instruction

The status value must be equal to Filled
after executing the action Fill Order

Edge

• Connect nodes
• Express the execution order
• Types

• Control flow edges
• Define the order between nodes

• Object flow edges
• Used to exchange data or objects
• Express a data dependency between

nodes
• Guard (condition)

• Control and object flow only
continue if guards in square
brackets evaluate to true

• Examples:

Guardact Guards

Validate
Instruction

Validate
Instruction

instruction :
Settlement
Instruction

Settle
Instruction

Settle
Instruction

Reject
Instruction

Reject
Instruction[Instruction is Invalid]

[Instruction is Valid]

Object flow

Control
flow

Beginning and Termination of Activities

• Initial node
– Starts the execution of an activity
– Provides tokens at all outgoing edges
– Keeps tokens until the successive nodes accept them

• Activity final node
– Ends all flows of an activity
– First token that reaches the activity final node terminates the entire

activity
– Other control and object tokens are deleted

• Flow final node
– Ends one execution path of an activity
– All other tokens of the activity remain unaffected

Alternative Paths – Decision Node

• Use to define alternative
branches

• Outgoing edges have
guards
– Syntax: [Boolean

expression]
– Token takes one branch
– Guards must be mutually

exclusive

• Notation:

• Example:

[Condition N]

[Condition 1]

�ĐƟŽŶϭ�ĐƟŽŶϭ
�ĐƟǀŝƚǇϭ

�ĐƟŽŶ KƵƚƉƵƚ�ƉĂƌĂŵĞƚĞƌ/ŶƉƵƚ�ƉĂƌĂŵĞƚĞƌ

�ĐƟǀŝƚǇ&ŝŶĂů�ĐƟǀŝƚǇ/ŶŝƟĂů

�ĐƟŽŶϮ�ĐƟŽŶϮ

�ĐƟŽŶϯ�ĐƟŽŶϯ

͘͘͘͘͘͘

�ĐƟŽŶϰ�ĐƟŽŶϰ

�ĐƟŽŶϱ�ĐƟŽŶϱ

�ĐƟŽŶϲ�ĐƟŽŶϲ

�ĐƟŽŶϳ�ĐƟŽŶϳ

�ǀĞŶƚ

dŝŵĞ�
�ǀĞŶƚ

ĐĂůů�ĞŚĂǀŝŽƌϭ͗��ĐƟǀŝƚǇϭ
KďũĞĐƚϮ͗��ůĂƐƐϮ

ĂƩƌϭ�с�ĂsĂůƵĞ^ĞŶĚ ZĞĐĞŝǀĞ

^ĞŶĚ^ĞŶĚ
KďũĞĐƚϮ͗
� ůĂƐƐϮ

ZĞĐĞǀŝĞĚZĞĐĞǀŝĞĚ

KďũĞĐƚϮ͗
� ůĂƐƐϮ

�ĐƟǀŝƚǇWĂƌĂŵĞƚĞƌϭ �ĐƟǀŝƚǇWĂƌĂŵĞƚĞƌϮ

�ĐƟǀŝƚǇϮ

�ĐƟǀŝƚǇWĂƌĂŵĞƚĞƌϭ �ĐƟǀŝƚǇWĂƌĂŵĞƚĞƌϮ

�ĐƟŽŶϴ�ĐƟŽŶϴ �ĐƟŽŶϵ�ĐƟŽŶϵ

&ůŽǁ&ŝŶĂů
act Guards

Validate
Instruction

Validate
Instruction

instruction :
Settlement
Instruction

Settle
Instruction

Settle
Instruction

Reject
Instruction

Reject
Instruction[Instruction is Invalid]

[Instruction is Valid]

Alternative Paths – Merge Node

• To bring alternative sub-paths
together

• Passes token to the next node
• Example: Decision and merge

nodes used to model loops

• Notation:

�ĐƟŽŶϭ�ĐƟŽŶϭ
�ĐƟǀŝƚǇϭ

�ĐƟŽŶ KƵƚƉƵƚ�ƉĂƌĂŵĞƚĞƌ/ŶƉƵƚ�ƉĂƌĂŵĞƚĞƌ

�ĐƟǀŝƚǇ&ŝŶĂů�ĐƟǀŝƚǇ/ŶŝƟĂů

�ĐƟŽŶϮ�ĐƟŽŶϮ

�ĐƟŽŶϯ�ĐƟŽŶϯ

͘͘͘͘͘͘

�ĐƟŽŶϰ�ĐƟŽŶϰ

�ĐƟŽŶϱ�ĐƟŽŶϱ

�ĐƟŽŶϲ�ĐƟŽŶϲ

�ĐƟŽŶϳ�ĐƟŽŶϳ

�ǀĞŶƚ

dŝŵĞ�
�ǀĞŶƚ

ĐĂůů�ĞŚĂǀŝŽƌϭ͗��ĐƟǀŝƚǇϭ
KďũĞĐƚϮ͗��ůĂƐƐϮ

ĂƩƌϭ�с�ĂsĂůƵĞ^ĞŶĚ ZĞĐĞŝǀĞ

^ĞŶĚ^ĞŶĚ
KďũĞĐƚϮ͗
� ůĂƐƐϮ

ZĞĐĞǀŝĞĚZĞĐĞǀŝĞĚ

KďũĞĐƚϮ͗
� ůĂƐƐϮ

�ĐƟǀŝƚǇWĂƌĂŵĞƚĞƌϭ �ĐƟǀŝƚǇWĂƌĂŵĞƚĞƌϮ

�ĐƟǀŝƚǇϮ

�ĐƟǀŝƚǇWĂƌĂŵĞƚĞƌϭ �ĐƟǀŝƚǇWĂƌĂŵĞƚĞƌϮ

�ĐƟŽŶϴ�ĐƟŽŶϴ �ĐƟŽŶϵ�ĐƟŽŶϵ

&ůŽǁ&ŝŶĂů

Existing

New - outside SRA

New - IT impacts

New - no IT impacts

Legend

ActivityInitial

Choose MenuChoose Menu Choose Menu
Item

Choose Menu
Item Confirm OrderConfirm Order

ActivityFinal

FlowFinal ActivityFinal ActivityInitial

[Customer has
finised choosing]

[Customer wants to choose more items]

Merge Node Decision Node

Question: What do the two Decision Nodes mean?
Existing

New - outside SRA

New - IT impacts

New - no IT impacts

Legend

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial
Send settlement

Instruction
Send settlement

Instruction
Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate Instruction

Receive and
Generate Instruction

pInx: Participant
Settlement Ins

Validate InsValidate Ins

Inx: T2S
Settlement Ins

Settle InstructionSettle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send NotificationSend Notification

Inx: T2S
Settlement Ins

Run Matching
Process

Run Matching
ProcessX

days
passed

X
days

passed

Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid
Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

Receive
notification

notif: Participant
Notification

[Inx.State ==
Valid]

[Yes]

[No]

Exception Handling– Interruptible Activity Region

• Define a group of actions whose
execution is to be terminated
immediately if a specific event
occurs. In that case, some other
behavior is executed

• Example: If a Cancel Request
occurs while A and B are executed
– Exception handling is activated
– All control tokens within the dashed

rectangle are deleted
– Action Cancel Order is activated and

executed
– No jumping back to the regular

execution

act Exception 2

Request
Cancelation

Cancel Order

ActivityInitial

AA

BB
ActivityFinal

…more actions follows

…more actions proceed

What does the Interruptible Activity Region Mean?
Existing

New - outside SRA

New - IT impacts

New - no IT impacts

Legend

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial
Send settlement

Instruction
Send settlement

Instruction
Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate Instruction

Receive and
Generate Instruction

pInx: Participant
Settlement Ins

Validate InsValidate Ins

Inx: T2S
Settlement Ins

Settle InstructionSettle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send NotificationSend Notification

Inx: T2S
Settlement Ins

Run Matching
Process

Run Matching
ProcessX

days
passed

X
days

passed

Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid
Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

Receive
notification

notif: Participant
Notification

[Inx.State ==
Valid]

[Yes]

[No]

Concurrent Flows – Fork and Join Nodes

• Fork Node
– Splits a flow into concurrent sub-flows.
– Duplicates token for all outgoing

edges
– Actions can be executed in any order.

• Join Node
Synchronizes concurrent sub-flows. This
means:
– Wait until tokens are present at all

incoming edges
– Merge all control tokens into one token

and passes it on
– Pass on all object tokens

act ForkJoin

Action4Action4

Action5Action5

Action6Action6

Action7Action7

... ...

Fork Node

Join Node

Describe What Happens in the Two Concurrent Flows
Existing

New - outside SRA

New - IT impacts

New - no IT impacts

Legend

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial
Send settlement

Instruction
Send settlement

Instruction
Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate Instruction

Receive and
Generate Instruction

pInx: Participant
Settlement Ins

Validate InsValidate Ins

Inx: T2S
Settlement Ins

Settle InstructionSettle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send NotificationSend Notification

Inx: T2S
Settlement Ins

Run Matching
Process

Run Matching
ProcessX

days
passed

X
days

passed

Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid
Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

Receive
notification

notif: Participant
Notification

[Inx.State ==
Valid]

[Yes]

[No]

• Mechanism that grants the execution permission to actions
• Not explicitly represented in the diagrams
• If an action receives a token, the action can be executed
• An action passes a token to the subsequent action when is has completed

its execution
• Guards can prevent the passing of a token
– Tokens are stored in the previous node

• Control token and object token
– Control token: “execution permission" for a node
– Object token: transport data + “execution permission”

Tokens (1/2)

Tokens (2/2)

… the first token that reaches the activity final node terminates the entire activity

… a parallelization node duplicates an incoming token for all outgoing edges

… a decision node passes the token to one outgoing edge (depending on the result of the
evaluation of the guard)

… if all incoming edges of an action have a token, the action is activated and is ready for execution

… all outgoing edges of all initial nodes are assigned a token….

… a merge node individually passes each token it gets to its outgoing edge

… a synchronization node waits until all incoming edges have a token, merges them to a single
token and passes it to its outgoing edge

… before the execution, the action consumes one token from every incoming edge;
after the execution, the action passes one token to every outgoing edge

x x x

x

x

x

xxx x

x

x

xx

x

x
x

End !

x

x

[1] Taken from: UML @ Classroom:
An Introduction to Object-Oriented Modeling

Activity Diagrams Notation used in Qualisist (1/4)
Name Notation Description

Initial node Start of the execution of an activity

Activity final node End of ALL execution flows of an activity

FlowFinalNode End of One execution flow of an activity

DecisionNode

MergeNode

Chooses between outgoing flows

Brings together multiple flows without
synchronization.

ForkNode

JoinNode

Splits a flow into multiple concurrent flows.

Synchronizes multiple flows
Note: all actions linked to ingoing flows must be
completed before execution continues

�ĐƟŽŶϭ�ĐƟŽŶϭ
�ĐƟǀŝƚǇϭ

�ĐƟŽŶ KƵƚƉƵƚ�ƉĂƌĂŵĞƚĞƌ/ŶƉƵƚ�ƉĂƌĂŵĞƚĞƌ

�ĐƟǀŝƚǇ&ŝŶĂů�ĐƟǀŝƚǇ/ŶŝƟĂů

�ĐƟŽŶϮ�ĐƟŽŶϮ

�ĐƟŽŶϯ�ĐƟŽŶϯ

͘͘͘͘͘͘

�ĐƟŽŶϰ�ĐƟŽŶϰ

�ĐƟŽŶϱ�ĐƟŽŶϱ

�ĐƟŽŶϲ�ĐƟŽŶϲ

�ĐƟŽŶϳ�ĐƟŽŶϳ

�ǀĞŶƚ

dŝŵĞ�
�ǀĞŶƚ

ĐĂůů�ĞŚĂǀŝŽƌϭ͗��ĐƟǀŝƚǇϭ
KďũĞĐƚϮ͗��ůĂƐƐϮ

ĂƩƌϭ�с�ĂsĂůƵĞ^ĞŶĚ ZĞĐĞŝǀĞ

^ĞŶĚ^ĞŶĚ
KďũĞĐƚϮ͗
� ůĂƐƐϮ

ZĞĐĞǀŝĞĚZĞĐĞǀŝĞĚ

KďũĞĐƚϮ͗
� ůĂƐƐϮ

�ĐƟǀŝƚǇWĂƌĂŵĞƚĞƌϭ �ĐƟǀŝƚǇWĂƌĂŵĞƚĞƌϮ

�ĐƟǀŝƚǇϮ

�ĐƟǀŝƚǇWĂƌĂŵĞƚĞƌϭ �ĐƟǀŝƚǇWĂƌĂŵĞƚĞƌϮ

�ĐƟŽŶϴ�ĐƟŽŶϴ �ĐƟŽŶϵ�ĐƟŽŶϵ

&ůŽǁ&ŝŶĂů

�ĐƟŽŶϭ�ĐƟŽŶϭ
�ĐƟǀŝƚǇϭ

�ĐƟŽŶ KƵƚƉƵƚ�ƉĂƌĂŵĞƚĞƌ/ŶƉƵƚ�ƉĂƌĂŵĞƚĞƌ

�ĐƟǀŝƚǇ&ŝŶĂů�ĐƟǀŝƚǇ/ŶŝƟĂů

�ĐƟŽŶϮ�ĐƟŽŶϮ

�ĐƟŽŶϯ�ĐƟŽŶϯ

͘͘͘͘͘͘

�ĐƟŽŶϰ�ĐƟŽŶϰ

�ĐƟŽŶϱ�ĐƟŽŶϱ

�ĐƟŽŶϲ�ĐƟŽŶϲ

�ĐƟŽŶϳ�ĐƟŽŶϳ

�ǀĞŶƚ

dŝŵĞ�
�ǀĞŶƚ

ĐĂůů�ĞŚĂǀŝŽƌϭ͗��ĐƟǀŝƚǇϭ
KďũĞĐƚϮ͗��ůĂƐƐϮ

ĂƩƌϭ�с�ĂsĂůƵĞ^ĞŶĚ ZĞĐĞŝǀĞ

^ĞŶĚ^ĞŶĚ
KďũĞĐƚϮ͗
� ůĂƐƐϮ

ZĞĐĞǀŝĞĚZĞĐĞǀŝĞĚ

KďũĞĐƚϮ͗
� ůĂƐƐϮ

�ĐƟǀŝƚǇWĂƌĂŵĞƚĞƌϭ �ĐƟǀŝƚǇWĂƌĂŵĞƚĞƌϮ

�ĐƟǀŝƚǇϮ

�ĐƟǀŝƚǇWĂƌĂŵĞƚĞƌϭ �ĐƟǀŝƚǇWĂƌĂŵĞƚĞƌϮ

�ĐƟŽŶϴ�ĐƟŽŶϴ �ĐƟŽŶϵ�ĐƟŽŶϵ

&ůŽǁ&ŝŶĂů

�ĐƟŽŶϭ�ĐƟŽŶϭ
�ĐƟǀŝƚǇϭ

�ĐƟŽŶ KƵƚƉƵƚ�ƉĂƌĂŵĞƚĞƌ/ŶƉƵƚ�ƉĂƌĂŵĞƚĞƌ

�ĐƟǀŝƚǇ&ŝŶĂů�ĐƟǀŝƚǇ/ŶŝƟĂů

�ĐƟŽŶϮ�ĐƟŽŶϮ

�ĐƟŽŶϯ�ĐƟŽŶϯ

͘͘͘͘͘͘

�ĐƟŽŶϰ�ĐƟŽŶϰ

�ĐƟŽŶϱ�ĐƟŽŶϱ

�ĐƟŽŶϲ�ĐƟŽŶϲ

�ĐƟŽŶϳ�ĐƟŽŶϳ

�ǀĞŶƚ

dŝŵĞ�
�ǀĞŶƚ

ĐĂůů�ĞŚĂǀŝŽƌϭ͗��ĐƟǀŝƚǇϭ
KďũĞĐƚϮ͗��ůĂƐƐϮ

ĂƩƌϭ�с�ĂsĂůƵĞ^ĞŶĚ ZĞĐĞŝǀĞ

^ĞŶĚ^ĞŶĚ
KďũĞĐƚϮ͗
� ůĂƐƐϮ

ZĞĐĞǀŝĞĚZĞĐĞǀŝĞĚ

KďũĞĐƚϮ͗
� ůĂƐƐϮ

�ĐƟǀŝƚǇWĂƌĂŵĞƚĞƌϭ �ĐƟǀŝƚǇWĂƌĂŵĞƚĞƌϮ

�ĐƟǀŝƚǇϮ

�ĐƟǀŝƚǇWĂƌĂŵĞƚĞƌϭ �ĐƟǀŝƚǇWĂƌĂŵĞƚĞƌϮ

�ĐƟŽŶϴ�ĐƟŽŶϴ �ĐƟŽŶϵ�ĐƟŽŶϵ

&ůŽǁ&ŝŶĂů

͘͘͘ ͘͘͘

[Condition N]

[Condition 1]

Existing

New - outside SRA

New - IT impacts

New - no IT impacts

Legend

ActivityInitial

Choose MenuChoose Menu Choose Menu
Item

Choose Menu
Item Confirm OrderConfirm Order

ActivityFinal

FlowFinal ActivityFinal ActivityInitial

[Customer has
finised choosing]

[Customer wants to choose more items]

act ForkJoin

Action4Action4

Action5Action5

Action6Action6

Action7Action7

... ...

Activity Diagrams Notation used in Qualisist (2/4)
Name Notation Description

Activity Partitions Grouping of nodes and edges
within an activity

Action Represents an action (atomic)

Activity Represents an activity (can be
broken down further)

Object Contains data or objects

Control Flow
Define the execution order between
nodes. The flow only continues if
guards (conditions) in square
brackets evaluate to true

Action1Action1 Activity1

Action [Output parameter][Input parameter]

Object1: Class1

attr4 = "Settled"
attr3 != class.attr5
attr2 = True
attr1 => 10

ActivityFinalActivityInitial

Action2Action2

Action3Action3

......

Action4Action4

Action5Action5

Action6Action6

Action7Action7

Event

Time
Event

callBehavior1: Activity1
Object2: Class2

attr1 = aValueSend Receive

SendSend
Object2:
C lass2

ReceviedRecevied

Object2:
C lass2

ActivityParameter1 ActivityParameter2

Activity2

ActivityParameter1 ActivityParameter2

Action8Action8 Action9Action9

FlowFinal

... ...

Action10Action10 Action11Action11

Action12Action12 Action13Action13

[Guard]

Action1Action1 Activity1

Action [Output parameter][Input parameter]

Object1: Class1

attr4 = "Settled"
attr3 != class.attr5
attr2 = True
attr1 => 10

ActivityFinalActivityInitial

Action2Action2

Action3Action3

......

Action4Action4

Action5Action5

Action6Action6

Action7Action7

Event

Time
Event

callBehavior1: Activity1
Object2: Class2

attr1 = aValueSend Receive

SendSend
Object2:
C lass2

ReceviedRecevied

Object2:
C lass2

ActivityParameter1 ActivityParameter2

Activity2

ActivityParameter1 ActivityParameter2

Action8Action8 Action9Action9

FlowFinal

... ...

Action10Action10 Action11Action11

Action12Action12 Action13Action13

[Guard]

Action1Action1 Activity1

Action [Output parameter][Input parameter]

Object1: Class1

attr4 = "Settled"
attr3 != class.attr5
attr2 = True
attr1 => 10

ActivityFinalActivityInitial

Action2Action2

Action3Action3

......

Action4Action4

Action5Action5

Action6Action6

Action7Action7

Event

Time
Event

callBehavior1: Activity1
Object2: Class2

attr1 = aValueSend Receive

SendSend
Object2:
C lass2

ReceviedRecevied

Object2:
C lass2

ActivityParameter1 ActivityParameter2

Activity2

ActivityParameter1 ActivityParameter2

Action8Action8 Action9Action9

FlowFinal

... ...

Action10Action10 Action11Action11

Action12Action12 Action13Action13

[Guard]

act Types of Actions

Existing

New - outside SRA

New - IT impacts

New - no IT impacts

Legend

Settlement
Data

Passed

Validate Instruction

Send
Notification

Send
Notification

Run Matching
Process

Run Matching
Process

Request
Cancelation

act Partitions

Secondary ActorSystem Under Discussion

SubSystem2SubSystem1

Primary ActorPrimary Actor System Under Discussion Secondary Actor

SubSystem A SubSystem B

Activity Diagrams Notation used in Qualisist (3/4)
Name Notation Description

Object Flow
Used to exchange data or objects.
Express a data dependency between
nodes

Call Behavior Action Action A refers to Activity1

Accept Time Event Wait for a time event

Accept Event Wait for an event

Activity Parameter
Node

Contains data and objects as input
and output parameters

Action1Action1 Activity1

Action [Output parameter][Input parameter]

Object1: Class1

attr4 = "Settled"
attr3 != class.attr5
attr2 = True
attr1 => 10

ActivityFinalActivityInitial

Action2Action2

Action3Action3

......

Action4Action4

Action5Action5

Action6Action6

Action7Action7

Event

Time
Event

callBehavior1: Activity1
Object2: Class2

attr1 = aValueSend Receive

SendSend
Object2:
C lass2

ReceviedRecevied

Object2:
C lass2

ActivityParameter1 ActivityParameter2

Activity2

ActivityParameter1 ActivityParameter2

Action8Action8 Action9Action9

FlowFinal

... ...

Action10Action10 Action11Action11

Action12Action12 Action13Action13

[Guard]

act Types of Actions

Settlement
Data

Passed

Validate Instruction

Send
Notification

Send
Notification

Run Matching
Process

Run Matching
Process

Request
Cancelation

act Types of Actions

Existing

New - outside SRA

New - IT impacts

New - no IT impacts

Legend

Settlement
Data

Passed

Validate Instruction

Send
Notification

Send
Notification

Run Matching
Process

Run Matching
Process

Request
Cancelation

act Types of Actions

Existing

New - outside SRA

New - IT impacts

New - no IT impacts

Legend

Settlement
Data

Passed

Validate Instruction

Send
Notification

Send
Notification

Run Matching
Process

Run Matching
Process

Request
Cancelation

Activity Diagrams Notation used in Qualisist (4/4)
Name Notation Description

Interruptible
activity region

Flow continues on a
different path if event
Cancel Request is
detected

Cancel
Request Cancel Order

ActivityInitial

AA

BB
ActivityFinal

…more actions
follows

…more actions
proceed

Practice 2: Create UML Use Case, Class and Activity
Diagrams (1/2)

• Goal: Learn to create a model
that includes a UML use case,
class and activity diagram
according to the Qualisist
modelling methodology.

• Tasks:
1. Open MT103 9x Cash Deadline

Qualisist project
2. Create a Use Case in the relevant

package (open the file
“Use_Cases exercises”)

3. Based on the proposed solution
(see next slide) create the To-Be
Activity diagram (as a basis copy
the As-Is activity diagram) and
update domain model

4. Discuss about the different models
created by the participants

Microsoft
Word Document

Use_Cases exercises

Practice 2: Create UML Use Case, Class and Activity
Diagrams (2/2)

Context: Currently, when an OI sends a subscription order with FOPP/Immediate settlement method,
Vestima immediately generates and settles 9x internal cash transfer with the current business day and time
as value date. As soon as 9x is settled, Vestima generates 90 instruction. However, the settlement of 90
instruction is subject to the cash instruction deadlines. If the cash instruction deadline is passed, the 90
instruction will only settle on the next available cash processing date as value date. Thus, clients complain
having their accounts being debited whereas the actual payment is done on the next business day.

Solution: In order to align settlement dates of 9x and 90inx, 9x instruction must become subject to cash
deadlines.
NCCIP maintains information about cash deadlines. In order to retrieve cash deadline from NCCIP before
generating 9x, Vestima will create 90inx (that will serve as a request to retrieve the cash deadline) where
Vestima will add 15 minutes to the “Receive timestamp” field and send this inx to NCCIP. Based on the inx,
NCCIP will provide Vestima with “Expected value date” that takes the cash deadlines into consideration.
If Vestima receives expected value date from NCCIP, then Vestima must generate 9x with the expected
value date.
In case Vestima receives an error message from NCCIP (such message header will contain 400, 401, 404,
500, 503 in the response) or does not receive any response from NCCIP within 15 seconds, then Vestima
must by default generate 9x with the current business date as value date.

Steps to Create a Qualisist Diagram

1 Right click on any
package

3
4

5

Type a name2

Steps to Select a Sub-Activity (1/2)

1 Select a Call Behavior Action in
an AD and hit Control + L 2’

If you have not created
the sub-activity,

hit Add New
(See the next Slide)

Select the
Sub-Activity

2 3 Hit OK

Steps to Assign a Call Sub-Activity (2/2)

2.1

2.4

Name the new
Activity

Click on Toolset →
Specialized → Add-In

Technologies

2.2 Select
Qualisist Activity toolbox 2.3

Steps to Reference an Actor from an Activity Partition

2

1

Select
the Actor 2

3

Select Activity Partition
and hit Control + L

Steps to Model the Varying Behavior of Objects at Run-time

Select an Object1

Hit Control + Shift + R2

Select the run-time value3

Close the above windows4

Steps to Use Guards In Control Flows

Double click on
the control flow1

2 3 Write Boolean
condition

Agenda

0. Installation and Configuration
1. Modelling Support
2. Requirements authoring

support
3. Requirements-to-Model

reconciliation support
4. Full deliverable generation
5. Gherkin test Scenarios

generation

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

1. Modeling
support

4. Full deliverable
generation

5. Gherkin test
scenarios generation

3. Requirements-to-model reconciliation
support

Project Name - Phase #
Subtitle

Author: Mauricio ALFEREZ
Date: 18/09/2020
Document Id: xxxxx

Internal use only

SRA - System Requirements

+ | Company logo

2. Requirements
authoring support

The Qualisist Solution

Recall the Qualisist Modeling Methodology

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

1. Modeling
support

4. Full deliverable
generation

5. Gherkin test
scenarios generation

3. Requirements-to-model reconciliation
support

Project Name - Phase #
Subtitle

Author: Mauricio ALFEREZ
Date: 18/09/2020
Document Id: xxxxx

Internal use only

SRA - System Requirements

+ | Company logo

2. Requirements
authoring support

The Qualisist Solution

UML
ADs

Specify Activity
Diagrams (ADs)

Create
Domain Model

Elicit Use Cases

Domain Model

Documents and
interviews

UML Use Case
Diagrams

Write Requirements

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

1. Modeling
support

4. Full deliverable
generation

5. Gherkin test
scenarios generation

3. Requirements-to-model reconciliation
support

Project Name - Phase #
Subtitle

Author: Mauricio ALFEREZ
Date: 18/09/2020
Document Id: xxxxx

Internal use only

SRA - System Requirements

+ | Company logo

2. Requirements
authoring support

The Qualisist Solution

UML
ADs

Specify Activity
Diagrams (ADs)

Create
Domain Model

Elicit Use Cases

Domain Model

Documents and
interviews

UML Use Case
Diagrams

Write Requirements Requirements

• We systematically developed a textual language named
Rimay intended at helping analysts write functional
requirements

• We used:
– 15 SRA’s from Clearstream
– 3215 natural language functional requirements

• Editor integrated in Enterprise Architect
– Allows to trace between text requirements and models
– Enables Requirements-to-Models consistency checking

Rimay – A Language for Writing Requirements

Textual Requirements Support

• Requirement syntax
check

• Autocompletion

• Instant feedback about
requirements errors

Overall Syntax of a Requirement (1/2)
REQUIREMENT: SCOPE? CONDITION_STRUCTURE?

ARTICLE? ACTOR MODAL_VERB not? SYSTEM_RESPONSE.
SCOPE: For MODIFIER? TEXT (and MODIFIER? TEXT),

R2: For each "line of the File", System must
check that Share_Class_Identifier.Value contains "line.ISIN”.

Example of a requirement with scope and without a conditions

MODIFIER: ARTICLE | QUANTIFIER
ARTICLE: a|an|the
QUANTIFIER: each, all, none, only one, any, …

REQUIREMENT: SCOPE? CONDITION_STRUCTURES?
ARTICLE? ACTOR MODAL_VERB not? SYSTEM_RESPONSE.

CONDITION_STRUCTURES: CONDITION_STRUCTURE ((,|and|or|,or|,and)
CONDITION_STRUCTURE)*, then?

Overall Syntax of a Requirement (2/2)

R1: When the Order_Issuer creates an Order of type Subscription_Order, the

Order_Issuer must set the settlement_method of the Order to "FOP".

• Example: A requirement with a condition and without scope:

One Condition

MODAL_
VERB SYSTEM_RESPONSEACTOR

ARTICLE

Condition Structures (When)
CONDITION_STRUCTURE: WHEN | IF | TEMPORAL …
WHEN: When TRIGGER
IF : If PRECONDITIONS | TRIGGER
TEMPORAL : (Before | After | Every) TRIGGER | TIME

When SystemB receives an "email alert" from SystemA

TRIGGER
• Example:

ACTOR ACTIONS EXPRESSSION

Condition Structures (If) (1/2)
CONDITION_STRUCTURE : WHEN | IF | TEMPORAL …
WHEN: When TRIGGER
IF : If PRECONDITIONS | TRIGGER
TEMPORAL : (Before | After | Every) TRIGGER | TIME

• Example (Non itemized preconditions):

If Instruction.description contains a "Keyword" or Instruction.record is "Live"

CONDITIONS_EXPRESSION

CONDITION CONDITION

Condition Structures (If) (2/2)

HYPHEN
If the following conditions are satisfied:

- the "Instruction" has the properties described in "Section Y",
- the "Instruction" has the properties: "Status and Settlement Date",
- the Instruction.Settlement_Date conforms to the standard "ISO8601",
- the Transaction.Amount is less than or equal to "Y Value",
- the "Transaction Type" of Settlement_Request is equal to "Z Value" and
- the "Account Number" field contains "0000"

CONDITION

• Example (Itemized preconditions):

Condition Structures (Temporal)
CONDITION_STRUCTURE: WHEN | IF | TEMPORAL …
WHEN: When TRIGGER
IF: If PRECONDITIONS | TRIGGER
TEMPORAL: (Before | After | Every) TRIGGER

Before SystemA sends an "Instruction" to SystemB

TRIGGER• Example:

ACTOR ACTIONS EXPRESSSION

Two or More Condition Structures

CONDITION_STRUCTURES: CONDITION_STRUCTURE

((,|and|or|,or|,and) CONDITION_STRUCTURE)*, then?
CONDITION_STRUCTURE: WHEN | IF | TEMPORAL

Before "8:00 am", every "calendar day", if System does not receive the "X" File, then
System must create an ”Alert"

TEMPORAL TEMPORAL If

CONDITION STRUCTURES (More than one)

Types of System Response (1/3)

The User must upload the "excel file" to the "SystemA"

ACTOR ATOMIC SYSTEM RESPONSE

The SystemA must create an "Confirmation Message” (referred to as MsgI)
and send MsgI to SystemB

The SystemA must do the following actions in sequence:

1 create an "Instruction"
2 send "Instruction" to SystemB

SYSTEM RESPONSE EXPRESSIONACTOR

ACTOR

ATOMIC_SYSTEM_RESPONSE(s)

INT

• There are 48 Grammar Rules to specify atomic system responses
• You don’t have to memorize them, just use them
• Example:

Types of Atomic System Responses

• https://orbilu.uni.lu/handle/10993/46388

More Information about Rimay

https://orbilu.uni.lu/handle/10993/46388

Tasks:
1. Get familiar with the Qualisist Requirements Editor (lead by instructors)
2. Preparatory examples (lead by instructors)
3. Divide into groups and rewrite a list of poorly-written requirements in the Qualisist editor (open the file

“Poorly Written Requirements”) - 10 minutes
4. Discuss the results with other groups – 30 minutes
5. Homework: Rewrite the requirements specified in “MT103 9x Cash Deadline” SRA using the

Qualisist Editor (See below the SRA provided by Elene).
6. Discuss the results on the next training day – 30 minutes

Practice 3: Writing Textual Functional Requirements

Microsoft
Word Document

MT103 9x Cash Deadline Poorly Written Requirements

Microsoft
Word Document

Steps to Open the Qualisist Requirements Editor

1 Double click on a
requirement

2 Click Yes

Agenda

0. Installation and Configuration
1. Modelling Support
2. Requirements authoring

support
3. Requirements-to-Model

reconciliation support
4. Full deliverable generation
5. Gherkin test Scenarios

generation

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

1. Modeling
support

4. Full deliverable
generation

5. Gherkin test
scenarios generation

3. Requirements-to-model reconciliation
support

Project Name - Phase #
Subtitle

Author: Mauricio ALFEREZ
Date: 18/09/2020
Document Id: xxxxx

Internal use only

SRA - System Requirements

+ | Company logo

2. Requirements
authoring support

The Qualisist Solution

Recall the Qualisist Modeling Methodology

ADs

Specify Activity
Diagrams (ADs)

Create
Domain Model

Elicit Use Cases

CDs

Documents and
interviews

Use Case
Diagrams
(UCDs)

Write
Requirements

NL Requirements

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

1. Modeling
support

4. Full deliverable
generation

5. Gherkin test
scenarios generation

3. Requirements-to-model reconciliation
support

Project Name - Phase #
Subtitle

Author: Mauricio ALFEREZ
Date: 18/09/2020
Document Id: xxxxx

Internal use only

SRA - System Requirements

+ | Company logo

2. Requirements
authoring support

The Qualisist Solution

Reconcile Requirements to Model

ADs

Specify Activity
Diagrams (ADs)

Create
Domain Model

Elicit Use Cases

CDs

Documents and
interviews

Use Case
Diagrams
(UCDs)

Write
Requirements

NL Requirements

Reconcile
Requirements

to Model

Requirements

Consistent
Requirements
Specification

Model

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

1. Modeling
support

4. Full deliverable
generation

5. Gherkin test
scenarios generation

3. Requirements-to-model reconciliation
support

Project Name - Phase #
Subtitle

Author: Mauricio ALFEREZ
Date: 18/09/2020
Document Id: xxxxx

Internal use only

SRA - System Requirements

+ | Company logo

2. Requirements
authoring support

The Qualisist Solution

Reconciliation Support

• Assistance to create trace

links between textual

requirements and models

• Consistency checking

• Proposal of recommendations

for Model enrichment

• Models typically include trace links between model
elements

• Trace links are mainly used in UML for tracking
requirements and changes across models

• Trace links between requirements and AD Actions are
sufficient in Qualisist as the AC generation is driven by
the control flow captured by actions

Trace Links

Relationship Matrix

• Relationship Matrix
allows to create, edit and
view the relationships
between, for example, the
Requirements and Actions

• Example of trace links
between Requirements
(Rows) and Actions
(Columns) R

eq
ui

re
m

en
ts

Actions

Trace
links

Trace Links in Qualisist

• An arrow means that the
Requirement is traced to the
Action, and vice versa

• Example: Requirement
CVD0030 is traced to the
Action Generate 9x instruction
for settlement with expected
value date

• Qualisist SRA Template provides two predefined
Relationship Matrix configurations:
– Requirements to Actions,

– Requirements to Actors (represented in Activity Partitions)

Trace Links in Qualisist

Assistance to Create Trace Links

• Qualisist assist users to
manage (create, delete and
update) trace links between
requirements and actions

• Generate or update trace links
between actors and
requirements

Steps to Open a Preconfigured Relationship Matrix

1 Doble click on one of the two Matrix
Specifications from the package

Relationships

2 You will see a
Relationship

Matrix

opens

opens

3 You can select other Packages in the
fields Source and Target

4
You can select

requirement
types different
to Functional
Requirements

Steps to Create Trace Links

1 Select an Action

3 Select an alternative and follow the
instructions

Go to: Specialize → Qualisist RE Tools
→
Create new Trace Link

2

Steps to Generate and Synchronize Traces between
Actors and Requirements

1 Select an Activity Diagram 2 Select Specialize → Qualisist RE Tools
→ Generate or update trace links

between Actors and Requirements

• Generating AC exclusively from models would miss critical
information that is available only in NL requirements

• We need to simultaneously consider both models and NL
requirements to be able to generate good AC

• Reconciliation of the information content in models and NL
requirements is necessary for deriving precise and complete
AC.

• Qualisist provides such an automated reconciliation
approach and tool.

Leveraging Natural-language Requirements for Deriving
Better AC from Models

Main Goal

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

Requirements Analysis

NL Requirements

Business Analysts

Acceptance Testing

Acceptance
Criteria

Test Engineers

Enrich models with information extracted from NL
requirements in order to generate better AC

• Define a set of 13 information extraction rules

• Propose a systematic method that generates
recommendations to improve the models with the
extracted information

Main Goal

Our Approach

Identify Model
Elements to Enrich

Enriched
Model

Acceptance
Criteria

2

3 Create
Recommendations

1 Extract Information

Enrich Model4

Generate
Acceptance Criteria5

Recommendations

NL
Requirements

Model

Requirements
Specification

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

Extract Information

Identify Model
Elements to Enrich

Enriched
Model

Acceptance
Criteria

2

3 Create
Recommendations

1 Extract Information

Enrich Model4

Generate
Acceptance Criteria5

Recommendations

NL
Requirements

Model

Requirements
Specification

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

Extract Information

RQ1: How can we extract AC-
related information from NL
requirements?

Category #
Scope 1
Condition
Structure 7

Actor 2
System
Response 3

13 rules to extract AC relevant
information content from NL
requirements
• Derived from manual

analysis of overlaps
between metamodels
element and the element
types in Rimay

• S1: If a prepositional phrase starts by “for each”, and
further mentions: the type A of the collection that will be
iterated over and an item B in the collection, then extract
A and B.

Check
ISIN

more
elements

…

more
elements

…

: File
line

R: For each "line of the File”,
System must check that

Share_Class_Identifier.Value
contains “line.ISIN”.

Type
 A

Type
 A

Item
 B Item

 B

Rule Scope S1

R: When Transfer_System receives a File,
Transfer_System must forward the File to

System.

Forward
File f: File

more
elements

…
Receive

File
more

elements
…

f: File

• C1: If the verb phrase A in a When structure does not
match the name of any of the actions preceding the
traced action, then extract A.

Rule Condition Structure C1

• A1: If an actor A in an NL requirement does not match
the name of any UML actor linked to the activity partition
of the traced action, then extract A.

Rule Actor A1

Create
Alert

: System

…more
elements

follow

more
elements

precede…

R: Before "8:00 am", every "calendar
day”, if System does not receive

the File,
then System must create an "Alert”.

• SR1: If a system response creates data A (e.g., Report,
Instruction, Alarm), then extract A.

Rule System Response SR1

Create
Alert

…more
elements

follow

more
elements

precede…
: Alert

R: Before "8:00 am", every "calendar day”, if System
does not receive the File, then System must create an

“Alert" .

Our Approach

Identify Model
Elements to Enrich

Enriched
Model

Acceptance
Criteria

2

3 Create
Recommendations

1 Extract Information

Enrich Model4

Generate
Acceptance Criteria5

Recommendations

NL
Requirements

Model

Requirements
Specification

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

1
2

Identify Models Elements to Enrich

Requirement. When the Order_Issuer (hereafter known as OI) creates an
Order of type Subscription_Order, then the OI must set the settlement_method
 of the Order to “FOP”.

Compare text
sequences

Activity Diagrams

Create
Order

…

…more
elements

Class Diagrams (Domain Model)

Use Case Diagrams (Actors)

…

actor
Order_Issuer …

settlement_date : date
Subscription_Order

act Create subscription order

Identify Models Elements to Enrich

6 model elements
to enrich

R1. When the Order_Issuer (hereafter known as OI)

creates an Order of type Subscription_Order, then the OI

must set the settlement_method of the Order to “FOP”.

SR1

actor actor alias

object type

property name property
valueobject name

A1 A2

SR2 SR3 SR2

Activity Diagrams

…

Class Diagrams (Domain Model)

act Create subscription order

Order : Subscription_Order

settlement_date : date
settlement_method : string

Subscription_Order

Create
Order

…more
elementssettlement_method = “FOP”

Use Case Diagrams (Actors)

…

A2 A1

SR1

SR2

SR2

SR3
OI : Order_Issuer

…actor
Order_Issuer

Our Approach

Identify Model
Elements to Enrich

Enriched
Model

Acceptance
Criteria

2

3 Create
Recommendations

1 Extract Information

Enrich Model4

Generate
Acceptance Criteria5

Recommendations

NL
Requirements

Model

Requirements
Specification

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

Create Recommendations

ID Description Rule

Rec. 4 Add the property “settlement_method” to the
object node of type “Subscription Order"

SR2

Rec. 5 Set the “settlement_method” property’s value to
“FOP”

SR2

… … …

Recommendations on
how to enrich the
model elements

Activity Diagrams

…

Class Diagrams (Domain Model)

act Create subscription order

Order : Subscription_Order

settlement_date : date
settlement_method : string

Subscription_Order

Create
Order

…more
elementssettlement_method = “FOP”

Use Case Diagrams (Actors)

…

A2 A1

SR1

SR2

SR2

SR3

«actor»
Order_Issuer

OI : Order_Issuer

…

Our Approach

Identify Model
Elements to Enrich

Enriched
Model

Acceptance
Criteria

2

3 Create
Recommendations

1 Extract Information

Enrich Model4

Generate
Acceptance Criteria5

Recommendations

NL
Requirements

Model

Requirements
Specification

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

RQ2: How can we systematically enrich models with the (AC-
related) information from NL requirements?

Enrich Model

Enrich the model
elements following
recommendations

ID Description Rule
Rec.
4

Add the property “settlement
method” to the object node of type
“Subscription Order"

SR2

Rec.
5

Set the “settlement_method”
property’s value to “FOP”

SR2

… … …

Activity Diagrams

…

Class Diagrams (Domain Model)

act Create subscription order

Order : Subscription_Order

settlement_date : date
settlement_method : string

Subscription_Order

Create
Order

…more
elementssettlement_method = “FOP”

Use Case Diagrams (Actors)

…

A2 A1

SR1

SR2

SR2

SR3
OI : Order_Issuer

…actor
Order_Issuer

Our Approach

Identify Model
Elements to Enrich

Enriched
Model

Acceptance
Criteria

2

3 Create
Recommendations

1 Extract Information

Enrich Model4

Generate
Acceptance Criteria5

Recommendations

NL
Requirements

Model

Requirements
Specification

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

Generate Acceptance Criteria

Generation of AC

@Intent Create
@Requirement_Id: R1
Scenario: Create an Order
Given an Order of type Subscription_Order does not
 exist in OI of type Order_Issuer
When OI Create Order,
Then Order exists in OI
 And the property settlement_method of Order is equal to FOP

Activity Diagrams
act Create subscription order

Order : Subscription_OrderCreate
Order

…more
elementssettlement_method = “FOP” …

A2 A1

SR1

SR2

SR3
OI : Order_Issuer

• https://orbilu.uni.lu/handle/10993/43900

More Information about Reconciliation Approach

Practice 4: Reconciliation Support (1/2)

• Goal: Learn how to perform
automatic requirements-to-
model reconciliation and
model verification

• Tasks:
1. Open the “MT103 9x Cash

Deadline” model
2. Select one of the Qualisist

validation rules

Practice 5: Reconciliation Support (2/2)

Tasks:
3. Run the validation rules and
understand the warning messages

Shortcut: Ctrl + Alt + v

4. Fix the model/requirements
related to the warnings

• Questions:
1. How many warnings did you
found?
2. How did you fix the
model/requirements?

Steps to Select the Validation Rules

1 Go to Design → Manage → Validate →
Configure Validation Rules 2 Check that the Qualisist rule’s categories

Steps to Validate the Model (or a Package)

1 Select the model or a package in the
Project Browser 2 Hit Ctrl + Alt + V , or select Specialize →

Qualisist Model Validation → Validate
Current Package

Agenda

0. Installation and Configuration
1. Modelling Support
2. Requirements authoring

support
3. Requirements-to-Model

reconciliation support
4. Full deliverable generation
5. Gherkin test Scenarios

generation

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

1. Modeling
support

4. Full deliverable
generation

5. Gherkin test
scenarios generation

3. Requirements-to-model reconciliation
support

Project Name - Phase #
Subtitle

Author: Mauricio ALFEREZ
Date: 18/09/2020
Document Id: xxxxx

Internal use only

SRA - System Requirements

+ | Company logo

2. Requirements
authoring support

The Qualisist Solution

Deliverable Generator

Capture of all deliverable sections in
Enterprise Architect ensuring

ü automated generation of full
deliverable

ü consistent structure and
formatting

ü versioning management (Future
Work)

Automated
Deliverable
Generator

Project Name - Phase #
Subtitle

Author: Mauricio ALFEREZ
Date: 18/09/2020
Document Id: xxxxx

Internal use only

SRA - System Requirements

+ | Company logo

Deliverable
in MS Word

Project Name - Phase #
Subtitle

Author: Mauricio ALFEREZ
Date: 18/09/2020
Document Id: xxxxx

Internal use only

SRA - System Requirements

+ | Company logo

Model
P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

Text

Requirements
in Enterprise Architect

Read only

Modeling an SRA in Qualisist

• All the sections are modelled
as a Packages
– Exceptions: Glossary, Acronyms

• Packages are composed of
Sub-Packages and Elements

• The Qualisist SRA Model
template generates the
structure of an SRA
– See the Modelling section of this

training

Steps to Fill Out the Deliverable Generator

1 Click on Specialize > Qualisist
Report Generator > Generate Report

2 Fill out the form

Steps to Create an Element in a Package

1 Right click on a package and click on
Add Element…

2 Click on Toolset list

Select Qualisist Modelling à Main
Contacts

Select type of record

3

5

Hit Save and Exit5

Editing Elements

• Property values are edited in
different views, e.g.,

• Properties view
– Use the General section to write

Alias and Name
– Use the Qualisist section to

write other except the
Description.

• Notes view
– Use it to write the description

Steps to Edit Qualisist Element’s Properties in the
Property View

1
Select the

element to be
edited

and press
Ctrl + 2

2
Edit the property values in

Qualisist section in the Properties
view

Steps to Edit Qualisist Elements in the Qualisist View

1 Right click on the package
that contains the element(s) 2 Go to Specialize > Qualisist RE Tools > Qualisist

View

Qualisist View Example

Add/Remove buttons to create/remove a contact

Editable values

Practice 6: Contacts

• Goal: Learn to create/edit
records using the Qualisist
View.

• Task:
1. Create a new contact in the

Main Contacts section

• Expected Result

Name: Jhon Doe
Role: Business Analysts
Organization Area/Unit: IFS IT
Vestima Luxembourg

List of Qualisist Elements

• History entries
• Contact entries
• In Scope/Out of Scope entries
• Key Principles/Key Decision, Assumptions, Constraints and

dependencies entries
• Data mapping/data dictionary entries
• Functional requirement entries
• Transition requirement entries
• Non-functional requirement entries

• According to Clearstream, Qualisist should support four
types of data attributes:
– Boolean: Contain the value either true or false
– Date: Contain a timestamp
– Alphanumeric: Contain either numbers and/or alphabetical

characters
– Numeric: Contain only numbers (either integers or decimals)

Remember the Predefined Data Types in Qualisist

• Expected Result

Practice 7: Data Dictionary

• Goal: Learn to create/edit new
records in the Data Dictionary
section using the Qualisist
View.

• Task: Create a new data entry
in the Data Dictionary sectionEntity: VideoLink
Field name: ISIN
Length: 12
Mandatory/Optional: Mandatory
Type: Alphanumeric
Description: Code specifying the share
class for the document.

Linked Documents

• Linked Documents are
formatted documents
associated with Elements and
used to write structured text or
extensive documentation SRA sections using linked documents in Qualisist

Practice 8: Link a Document to a Package

• Goal: Learn how to provide
extensive documentation on
an element using the Linked
Documents tool.

• Task:
1. Link a document to the

package representing the
section named “Summary”

2. You don’t need to type the
section title “Summary”

• Expected Result

https://sparxsystems.com/enterprise_architect_user_guide/14.0/modeling_tools/linking_documentation.html

Steps to Import and Link a Document

1
Select a
package

4

Select Design à
Manage à Edit

Linked Document

2 3

(Optional) Select Edit Mode
if the Import File menu is disabled

Go to Edità File à Import File

Steps to Link Documents (1/2)

1
Select a package and
open the Notes view
(Shortcut Ctrl + 3)

2 Click on the Link Document Icon

3 Select None and hit OK

4 Add text, images, tables, etc., to the
document)

Steps to Link Documents (2/2)

5 Go to Edit à File à Save as (Export to File) and follow the instructions

Practice 9: Additional Information

• Goal: Learn to use standard EA
tools to create glossary and
abbreviations tables.

• Task 1:
Create the following glossary entry

• Task 2:
Create the following abbreviation
entry

Name: IU
Definition: Internal User –
Clearstream Banking administrator with
permissions to act, under strict
guidelines, on behalf of the OI or the
OHA.

Name: CBL
Definition: Clearstream Banking
Luxembourg

Practice 10: Generate a Deliverable Report

• Goal: Learn to configure and
use the Qualisist report
generator.

• Tasks:
1. Fill out the Qualisist report

generator form for the “MT103
9x Cash Deadline” project
based on the SRA provided by
Elene

2. Generate the deliverable report

Agenda

0. Installation and Configuration
1. Modelling Support
2. Requirements authoring

support
3. Requirements-to-Model

reconciliation support
4. Full deliverable generation
5. Gherkin test Scenarios

generation

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

1. Modeling
support

4. Full deliverable
generation

5. Gherkin test
scenarios generation

3. Requirements-to-model reconciliation
support

Project Name - Phase #
Subtitle

Author: Mauricio ALFEREZ
Date: 18/09/2020
Document Id: xxxxx

Internal use only

SRA - System Requirements

+ | Company logo

2. Requirements
authoring support

The Qualisist Solution

Disconnect between Requirements and Testing

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

Requirements Analysis

Requirements
(text and models)

Business Analysts

Acceptance Testing

Acceptance
Criteria

Test Engineers

Acceptance Criteria (AC) Generation

• Automated generation of

Acceptance Criteria in the Gherkin

language

• Generation of Acceptance Criteria

based on the text and models

• Negligible execution time of

Acceptance Criteria generation

Acceptance Criteria

Test
Scenarios
(Gherkin)

Requirements

Model
P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

Text

AGAC: Automatic Generation of Acceptance Criteria

AGAC
P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

Requirements Analysis

Requirements
(text and models)

Business Analysts

Acceptance Testing

Acceptance
Criteria

Test Engineers

Add Test Intents

UML
ADs

Specify Activity
Diagrams (ADs)

Specify
Intents

Identify
Intents

Create
Domain Model

Elicit Use Cases

Domain
Model

Documents and
interviews

UML Use Case
Diagrams

UML
ADs

Test Intent: Observable behavior of an action
that should be verified during testing

Annotated with
• High-level

Test Intents of Actions
• Pre-/Post-conditions

11 Intent Types

Based on manual investigation
of 841 AC from Clearstream
• «Create», «Read», «Update»,

«Send»
– concern the object associated

to the outgoing edge

«Send»

11 Intent Types

Based on manual investigation
of 841 AC from Clearstream
• «Create», «Read», «Update»,

«Send»
– concern the object associated

to the outgoing edge
• «Delete», «Receive», «Validate»

– concern the object associated
to the incoming edge

«Receive»

11 Intent Types

Based on manual investigation of
841 AC from Clearstream
• «Create», «Read», «Update»,

«Send»
– Concern the object associated to

the outgoing edge
• «Delete», «Receive», «Validate»

– Concern the object associated to
the incoming edge

• «Display», «Not-Display»,
«Enable», «Disable»
– Concern the user interface

«Display»

Automated Identification of Intents

The object on the output edge has an ID
never observed before

«Create» «Create»

«Update»

Input and output connected to objects with
the same ID

«Update»

The verb (or a synonym) in the action name
matches the intent name

«ANY» (e.g., «Validate»)

«Validate»

Qualisist Modeling Methodology

UML
ADs

Specify Activity
Diagrams (ADs)

Specify
Test Intents

Identify
Test Intents

Create
Domain ModelElicit Use Cases Domain

Model

Documents and
interviews

UML Use Case
Diagrams

Specify
Constraints

Generate
Constraints

Extended
UML
ADs

UML
ADs with

Intents

Automated Generation of Constraints based on
Object–flow Analysis

The action
produces
an object

Postcondition: attribute values
should match the model

the property "State" of Inx is
equal to "Settled"

Automated Generation of Constraints
based on Intents Analysis

«Create»
«Receive»

Precondition:
the entity does not exist
Inx does not exist in T2S

«Read»
«Update»
«Delete»
«Send»

Precondition:
the entity exists

Inx exists in T2S
«Update»

«Create»

Automated AC generation

Tool-supported
Requirements

Modeling

UML Use Case
Diagrams

Domain
Models

Extended
UML
ADs

Automated AC generation

Automated
AC generation

@Intent: Create # Tag
Scenario: <action>
Given <domainEntity> (of type <class>)? # The type is optional
 does not exist in <actor> (of type <class>)?, # The type is optional
 # Zero or more previous guard conditions and local preconditions
(And <constraint.expression>)*
When <actor> <action>,
Then <domainEntity> exists in <actor>
(And <constraint.expression>)* # Zero or more local postconditions
Zero or more constraints depending on the properties that are initialised
(And the property <property> of <domainEntity> is <operator> <value>) *

AGAC
Gherkin
Scenario
Templates

Gherkin
AC

(Id: 10) Merge1 : Merge

(Id: 2) Send settlement Instruction : Input

(Id: 3) Receive Instruction : Input

(Id: 4) Val_Ins : Include

(Id: 5) Inx.State == Valid
: BiflowCondition

(Id: 6) : ParallelStart

(Id: 7) Run Matching process : Internal

(Id: 1) ActivityInitial : Start

(Id: 9) Inx.SettlementDate : Other

(Id: 13) X days : Interrupt

(Id: 11) Settle Instruction : Input

(Id: 12) Merge2 : Merge

(Id: 15) Send Notification : Input

(Id: 16) Proc_Notif : Include

(Id: 17) FlowFinal : Exit

(Id: 14) Process Instruction
Rejection : Internal

(Id: 8) Inx.SettlementDate >
T2S.CurrentDate
: BiflowCondition

False

Next0

Next

Next

False

Next

Next

True

Next

Next

Next

True

Next

Next

Next

Next

Next

Next1Next

Test
Model Test

Sequences

Tool-supported
Requirements

Modeling

UML Use Case
Diagrams

Domain
Models

Extended
UML
ADs

Test Model
Existing

New - outside SRA

New - IT impacts

New - no IT impacts

Legend

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial
Send settlement

Instruction
Send settlement

Instruction
Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate Instruction

Receive and
Generate Instruction

pInx: Participant
Settlement Ins

Validate InsValidate Ins

Inx: T2S
Settlement Ins

Settle InstructionSettle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send NotificationSend Notification

Inx: T2S
Settlement Ins

Run Matching
Process

Run Matching
ProcessX

days
passed

X
days

passed

Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid
Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

Receive
notification

notif: Participant
Notification

[Inx.State ==
Valid]

[Yes]

[No]

Test Model Generation

• Metamodel in the paper
• One node for each element in the Activity Diagram
• Multiple roots:

– Initial activity nodes
– Events (e.g., events in interruptible activity regions)

(Id: 10) Merge1 : Merge

(Id: 2) Send settlement Instruction : Input

(Id: 3) Receive Instruction : Input

(Id: 4) Val_Ins : Include

(Id: 5) Inx.State == Valid
: BiflowCondition

(Id: 6) : ParallelStart

(Id: 7) Run Matching process : Internal

(Id: 1) ActivityInitial : Start

(Id: 9) Inx.SettlementDate : Other

(Id: 13) X days : Interrupt

(Id: 11) Settle Instruction : Input

(Id: 12) Merge2 : Merge

(Id: 15) Send Notification : Input

(Id: 16) Proc_Notif : Include

(Id: 17) FlowFinal : Exit

(Id: 14) Process Instruction
Rejection : Internal

(Id: 8) Inx.SettlementDate >
T2S.CurrentDate
: BiflowCondition

False

Next0

Next

Next

False

Next

Next

True

Next

Next

Next

True

Next

Next

Next

Next

Next

Next1Next

Activity Diagram

Test Model

(Id: 10) Merge1 : Merge

(Id: 2) Send settlement Instruction : Input

(Id: 3) Receive Instruction : Input

(Id: 4) Val_Ins : Include

(Id: 5) Inx.State == Valid
: BiflowCondition

(Id: 6) : ParallelStart

(Id: 7) Run Matching process : Internal

(Id: 1) ActivityInitial : Start

(Id: 9) Inx.SettlementDate : Other

(Id: 13) X days : Interrupt

(Id: 11) Settle Instruction : Input

(Id: 12) Merge2 : Merge

(Id: 15) Send Notification : Input

(Id: 16) Proc_Notif : Include

(Id: 17) FlowFinal : Exit

(Id: 14) Process Instruction
Rejection : Internal

(Id: 8) Inx.SettlementDate >
T2S.CurrentDate
: BiflowCondition

False

Next0

Next

Next

False

Next

Next

True

Next

Next

Next

True

Next

Next

Next

Next

Next

Next1Next

Test Model Generation

• Metamodel in the paper
https://orbilu.uni.lu/handle/10993/39710

• One node for each element in the Activity Diagram
• Multiple roots:

– Initial activity nodes
– Events (e.g., events in interruptible activity regions)

Existing

New - outside SRA

New - IT impacts

New - no IT impacts

Legend

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial
Send settlement

Instruction
Send settlement

Instruction
Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate Instruction

Receive and
Generate Instruction

pInx: Participant
Settlement Ins

Validate InsValidate Ins

Inx: T2S
Settlement Ins

Settle InstructionSettle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send NotificationSend Notification

Inx: T2S
Settlement Ins

Run Matching
Process

Run Matching
ProcessX

days
passed

X
days

passed

Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid
Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

Receive
notification

notif: Participant
Notification

[Inx.State ==
Valid]

[Yes]

[No]

Activity Diagram

https://orbilu.uni.lu/handle/10993/39710

Root derived from

(Id: 10) Merge1 : Merge

(Id: 2) Send settlement Instruction : Input

(Id: 3) Receive Instruction : Input

(Id: 4) Val_Ins : Include

(Id: 5) Inx.State == Valid
: BiflowCondition

(Id: 6) : ParallelStart

(Id: 7) Run Matching process : Internal

(Id: 1) ActivityInitial : Start

(Id: 9) Inx.SettlementDate : Other

(Id: 13) X days : Interrupt

(Id: 11) Settle Instruction : Input

(Id: 12) Merge2 : Merge

(Id: 15) Send Notification : Input

(Id: 16) Proc_Notif : Include

(Id: 17) FlowFinal : Exit

(Id: 14) Process Instruction
Rejection : Internal

(Id: 8) Inx.SettlementDate >
T2S.CurrentDate
: BiflowCondition

False

Next0

Next

Next

False

Next

Next

True

Next

Next

Next

True

Next

Next

Next

Next

Next

Next1Next

A Fragment of an Activity Diagram

A Fragment of a Test
Model

Test Model

(Id: 10) Merge1 : Merge

(Id: 2) Send settlement Instruction : Input

(Id: 3) Receive Instruction : Input

(Id: 4) Val_Ins : Include

(Id: 5) Inx.State == Valid
: BiflowCondition

(Id: 6) : ParallelStart

(Id: 7) Run Matching process : Internal

(Id: 1) ActivityInitial : Start

(Id: 9) Inx.SettlementDate : Other

(Id: 13) X days : Interrupt

(Id: 11) Settle Instruction : Input

(Id: 12) Merge2 : Merge

(Id: 15) Send Notification : Input

(Id: 16) Proc_Notif : Include

(Id: 17) FlowFinal : Exit

(Id: 14) Process Instruction
Rejection : Internal

(Id: 8) Inx.SettlementDate >
T2S.CurrentDate
: BiflowCondition

False

Next0

Next

Next

False

Next

Next

True

Next

Next

Next

True

Next

Next

Next

Next

Next

Next1Next

Test Sequences Generation

• Test Sequence: sequence of
nodes

• Each test sequence leads to
an Acceptance Criterion

9

14

13

5

1

10

6

12

17

15

2

3

4

7

11

16

P1 = [1,2,3,4,5,6,12,7,15,8,16,9,17,10,11,12,15,16,17]
P2 = [1,2,3,4,5,6,12,7,15,8,16,10,17,11,12,15,16,17]
P3= [1,2,3,4,5,14,12,15,16,17]
P4= [13,14,15,16,17]

Generated Test Sequences

8

Test Model

(Id: 10) Merge1 : Merge

(Id: 2) Send settlement Instruction : Input

(Id: 3) Receive Instruction : Input

(Id: 4) Val_Ins : Include

(Id: 5) Inx.State == Valid
: BiflowCondition

(Id: 6) : ParallelStart

(Id: 7) Run Matching process : Internal

(Id: 1) ActivityInitial : Start

(Id: 9) Inx.SettlementDate : Other

(Id: 13) X days : Interrupt

(Id: 11) Settle Instruction : Input

(Id: 12) Merge2 : Merge

(Id: 15) Send Notification : Input

(Id: 16) Proc_Notif : Include

(Id: 17) FlowFinal : Exit

(Id: 14) Process Instruction
Rejection : Internal

(Id: 8) Inx.SettlementDate >
T2S.CurrentDate
: BiflowCondition

False

Next0

Next

Next

False

Next

Next

True

Next

Next

Next

True

Next

Next

Next

Next

Next

Next1Next

Test Sequences Generation

• Test Sequence: sequence of
nodes

• Each test sequence leads to
an Acceptance Criterion

9

14

13

5

1

10

6

12

17

15

2

3

4

7

11

16

P1 = [1,2,3,4,5,6,12,7,15,8,16,9,17,10,11,12,15,16,17]
P2 = [1,2,3,4,5,6,12,7,15,8,16,10,17,11,12,15,16,17]
P3= [1,2,3,4,5,14,12,15,16,17]
P4= [13,14,15,16,17]

Generated Test Sequences

8

Test Model

(Id: 10) Merge1 : Merge

(Id: 2) Send settlement Instruction : Input

(Id: 3) Receive Instruction : Input

(Id: 4) Val_Ins : Include

(Id: 5) Inx.State == Valid
: BiflowCondition

(Id: 6) : ParallelStart

(Id: 7) Run Matching process : Internal

(Id: 1) ActivityInitial : Start

(Id: 9) Inx.SettlementDate : Other

(Id: 13) X days : Interrupt

(Id: 11) Settle Instruction : Input

(Id: 12) Merge2 : Merge

(Id: 15) Send Notification : Input

(Id: 16) Proc_Notif : Include

(Id: 17) FlowFinal : Exit

(Id: 14) Process Instruction
Rejection : Internal

(Id: 8) Inx.SettlementDate >
T2S.CurrentDate
: BiflowCondition

False

Next0

Next

Next

False

Next

Next

True

Next

Next

Next

True

Next

Next

Next

Next

Next

Next1Next

Test Sequences Generation

• Test Sequence: sequence of
nodes

• Each test sequence leads to
an Acceptance Criterion

9

14

13

5

1

10

6

12

17

15

2

3

4

7

11

16

P1 = [1,2,3,4,5,6,12,7,15,8,16,9,17,10,11,12,15,16,17]
P2 = [1,2,3,4,5,6,12,7,15,8,16,10,17,11,12,15,16,17]
P3= [1,2,3,4,5,14,12,15,16,17]
P4= [13,14,15,16,17]

Generated Test Sequences

8

Test Model

(Id: 10) Merge1 : Merge

(Id: 2) Send settlement Instruction : Input

(Id: 3) Receive Instruction : Input

(Id: 4) Val_Ins : Include

(Id: 5) Inx.State == Valid
: BiflowCondition

(Id: 6) : ParallelStart

(Id: 7) Run Matching process : Internal

(Id: 1) ActivityInitial : Start

(Id: 9) Inx.SettlementDate : Other

(Id: 13) X days : Interrupt

(Id: 11) Settle Instruction : Input

(Id: 12) Merge2 : Merge

(Id: 15) Send Notification : Input

(Id: 16) Proc_Notif : Include

(Id: 17) FlowFinal : Exit

(Id: 14) Process Instruction
Rejection : Internal

(Id: 8) Inx.SettlementDate >
T2S.CurrentDate
: BiflowCondition

False

Next0

Next

Next

False

Next

Next

True

Next

Next

Next

True

Next

Next

Next

Next

Next

Next1Next

Test Sequences Generation

• Test Sequence: sequence of
nodes

• Each test sequence leads to
an Acceptance Criterion

9

14

13

5

1

10

6

12

17

15

2

3

4

7

11

16

P1 = [1,2,3,4,5,6,12,7,15,8,16,9,17,10,11,12,15,16,17]
P2 = [1,2,3,4,5,6,12,7,15,8,16,10,17,11,12,15,16,17]
P3= [1,2,3,4,5,14,12,15,16,17]
P4= [13,14,15,16,17]

Generated Test Sequences

8

• 12 templates: one for each of the 11 intents + one for
interrupts

Scenario Generation with Gherkin Templates

«Create»
@Intent: Create
Scenario: <action>
Given <domainEntity> (of type <class1>)? does not exist in <actor> (of type <class2>)?
(And PRECONDITIONS_TEXT) *
When <actor> <action>
Then <domainEntity> (of type <class1>)? exist in <actor> (of type <class2>)?
(And the property <property> of <domainEntity> is <operator> <value>)*

«Create» Template

Gherkin Scenario

Test Sequence

Example of Generated Acceptance Criterion

Template for «Create» Intent
@Intent: Create
@Related_Requirements: (<requirementID> (, <requirementID>)*)?
Scenario: <action>
Given <domainEntity> (of type <class1>)? does not exist in <actor> (of type <class2>)?
(And PRECONDITIONS_TEXT) *
When <actor> <action>
Then <domainEntity> (of type <class1>)? exist in <actor> (of type <class2>)?
(And GENERATED_POSTCONDITIONS_FOR_UPDATED_OBJECTS)*

1
8

AGAC Contributions

• Rely on Gherkin templates to produce Gherkin
scenarios using information in the ADs

• Rely on automatically generated pre-/post- conditions
to specify context and expected result for each
Gherkin scenario

• Exercise relevant test paths (e.g., parallelism)

https://orbilu.uni.lu/handle/10993/39710

More Information about Qualisist Modeling Approach

https://orbilu.uni.lu/handle/10993/39710

Steps to Run the AC Generator

1 Select an Activity Diagram 2 Select Specialize → Qualisist AC
Generator → Calculate Acceptance

Criteria

1
8

The Qualisist Solution

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

1. Modeling
support

4. Full deliverable
generation

5. Gherkin test
scenarios generation

3. Requirements-to-model reconciliation
support

Project Name - Phase #
Subtitle

Author: Mauricio ALFEREZ
Date: 18/09/2020
Document Id: xxxxx

Internal use only

SRA - System Requirements

+ | Company logo

2. Requirements
authoring support

Accelerate Time to Market

Qualisist requirements authoring support, deliverables
generation and automation of Acceptance Criteria
generation will save significant time on your projects!

Project Name - Phase #
Subtitle

Author: Mauricio ALFEREZ
Date: 18/09/2020
Document Id: xxxxx

Internal use only

SRA - System Requirements

+ | Company logo

Project Name - Phase #
Subtitle

Author: Mauricio ALFEREZ
Date: 18/09/2020
Document Id: xxxxx

Internal use only

SRA - System Requirements

+ | Company logo

Generation of
Deliverables

Generation of
Acceptance
Criteria (AC)

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State ==
Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

Requirements Authoring
Support

Imagine what Qualisist can do
for you

Contact Persons
Elene Pitskhelauri, IFS IT Luxembourg
Email: elene.pitskhelauri@clearstream.com
Thomas Henin, IFS IT Luxembourg
Email: thomas.henin@clearstream.com

